Organic Chemistry

The Covalent Bond

- 1. σ and π bonds (No Alkenes)
 - a. hybrid orbitals: sp³, sp², sp and respective geometries
 - b. valence shell electron pair repulsion and the prediction of shapes of molecules (e.g., NH₃, H₂O, CO₂)
 - c. structural formulas for molecules involving H, C, N, O, F, S, P, Si, Cl
 - d. delocalized electrons and resonance in ions and molecules
- 2. Multiple bonding (No Alkenes)
 - a. its effect on bond length and bond energies
 - b. rigidity in molecular structure
- 3. Stereochemistry of covalently bonded molecules
 - a. isomers
 - i. structural isomers
 - ii. stereoisomers (e.g. diastereomers, enantiomers, cis/trans
 - isomers)
 - iii. conformational isomers
 - b. polarization of light, specific rotation
 - c. absolute and relative configuration
 - i. conventions for writing R and S forms
 - ii. conventions for writing E and Z forms
 - d. racemic mixtures, separation of enantiomers by biological means

Molecular Strucure and Spectra

- 1. Absorption spectroscopy
 - a. infrared region

- i. intramolecular vibrations and rotations
- ii. recognizing common characteristic group absorptions, fingerprint region
- b. visible region
 - i. absorption in visible region gives complementary color (e.g., carotene)
 - ii. effect of structural changes on absorption (e.g., indicators)
- c. ultraviolet region (No Alkenes)
 - i. π -electron and non-bonding electron transition
 - ii. conjugated systems
- 2. Mass spectroscopy: m/e ratio, parent peak
- 3. NMR spectroscopy
 - a. protons in a magnetic field; equivalent protons
 - b. spin-spin splitting

Separations and Purifications

- 1. Extraction: distribution of solute between two immiscible solvents
- 2. Distillation
- 3. Chromatography-basic principles involved in separation process
 - a. column chromatography
 - i. gas-liquid chromatography
 - b. paper chromatography 1, u
 - c. thin-layer chromotography
- 4. Recrystalization; solvent choice from solubility data

Hydrocarbons

- A. ALIPHATIC ALKANES
 - 1. Description
 - a. nomenclature
 - b. physical properties
 - 2. Important reactions
 - a. combustion
 - b. substitution reactions with halogens, etc.
 - 3. General principles
 - a. stability of free radicals; chain reaction mechanism; inhibition
 - b. ring strain in cyclic compounds
 - c. bicyclic molecules

Oxygen Containing Compounds

- A. ALCOHOLS
 - 1. Description
 - a. nomenclature
 - b. physical properties
 - c. infrared absorption of OH group

2. Important reactions

- a. substitution reactions: S_N1 or S_N2 , depending on alcohol and derived alkyl halide
- b. oxidation
- c. pinacol rearrangement in polyhydroxyalcohols; synthetic uses
- d. protection of alcohols
- e. reactions with SOCl₂ and PBr₃
- f. preparation of mesylates and tosylates
- g. esterification
- h. inorganic esters
- 3. General principles
 - a. hydrogen bonding
 - b. acidity of alcohols compared to other classes of oxygen-containing compounds
 - c. effect of chain branching on physical properties

B. ALDEHYDES AND KETONES

- 1. Description
 - a. nomenclature
 - b. physical properties
 - c. infrared absorption of C=O bond
- 2. Important reactions
 - a. nucleophilic addition reactions at C=O bond
 - i. acetal, hemiacetal
 - ii. imine, enamine
 - b. reactions at adjacent positions
 - i. haloform reactions
 - ii. aldol condensation
 - iii. oxidation
 - c. 1,3-dicarbonyls: internal H-bonding
 - d. keto-enol tautomerism
 - e. organometallic reagents
 - f. acetoacetic ester syntheses
 - g. Wolff-Kishner reaction
 - h. Grignard reagents
- 3. General principles
 - a. effect of substituents on reactivity of C=O; steric hindrance
 - b. acidity of αH; carbanions
 - c. α , β -unsaturated carbonyls—resonance structures

C. CARBOXYLIC ACIDS

- 1. Description
 - a. nomenclature
 - b. physical properties and solubility
 - c. infrared absorption

- 2. Important reactions
 - a. carboxyl group reactions
 - i. nucleophilic attack
 - ii. reduction
 - iii. decarboxylation
 - iv. esterification
 - b. reactions at 2 position
 - i. halogenation
 - ii. substitution reactions
- 3. General principles
 - a. H bonding
 - b. dimerization
 - c. acidity of the carboxyl group
 - d. inductive effect of substituents
 - e. resonance stability of carboxylate anion

D. ACID DERIVATIVES (ACID CHLORIDES, ANHYDRIDES, AMIDES, ESTERS)

- 1. Description
 - a. nomenclature
 - b. physical properties
 - c. infrared absorption
- 2. Important reactions
 - a. preparation of acid derivatives
 - b. nucleophilic substitution
 - c. Hoffman degradation of amides; migration of aryl group
 - d. transesterification
 - e. hydrolysis of fats and glycerides (saponification)
 - f. hydrolysis of amides
- 3. General principles
 - a. relative reactivity of acid derivatives
 - b. steric effects
 - c. electronic effects
 - d. strain (e.g., β-lactams)

E. KETO ACIDS AND ESTERS

- 1. Description; nomenclature
- 2. Important reactions
 - a. decarboxylation
 - b. acetoacetic ester synthesis
- 3. General principles
 - a. acidity of α hydrogen and β -keto ester
 - b. keto-enol tautomerism

Amines

- 1. Description
 - a. nomenclature
 - b. stereochemistry and physical properties
 - c. infrared absorption

- 2. Major reactions
 - a. amide formation
 - b. reactions with nitrous acid
 - c. alkylation
 - d. Hoffman elimination
- 3. General principles
 - a. basicity
 - b. stabilization of adjacent carbonium ions (carbocations)
 - c. effect of substituents on basicity of aromatic amines

Biological Molecules

- A. CARBOHYDRATE
 - 1. Description
 - a. nomenclature and classification, common names
 - b. absolute configuration
 - c. cyclic structure and conformations of hexoses
 - d. epimers and anomers
 - 2. Hydrolysis of the glycoside linkage

B. AMINO ACIDS AND PROTEINS

- 1. Description
 - a. absolute configuration at the α position
 - b. amino acids as dipolar ions classification
 - c. classification
 - i. acidic or basic
 - ii. hydrophobic or hydrophilic
- 2. Reactions
 - a. peptide linkage
 - b. hydrolysis
- 3. General principles
 - a. 1° structure of proteins
 - b. 2° structure of proteins

C. LIPIDS

Description; structure

- a. steroids
- b. terpenes
- c. triacyl glycerols
- d. free fatty acids

D. PHOSPHORUS COMPOUNDS

- 1. Description
 - a. structure of phosphoric acids (anhydrides and esters)
- 2. Important reactions
 - a. Wittig reaction

General Concepts in Organic Chemistry

- A. CLASSIFICATION OF ORGANIC COMPOUNDS ACCORDING TO FUNCTIONAL GROUPS
- B. REACTIONS, REACTION MECHANISMS, AND THE PRINCIPLES INVOLVED (metabolic enzyme-controlled reactions and pathways are not included in this topic area)
- C. STRUCTURE AND STEREOCHEMISTRY OF ORGANIC COMPOUNDS
- D. IUPAC NOMENCLATURE OF ORGANIC COMPOUNDS
- E. MULTISTEP SYNTHESIS/RETROSYNTHESIS

General Chemistry

Electronic Structure and Periodic Table

- A. ELECTRONIC STRUCTURE
 - 1. Orbital structure of hydrogen atom, principal quantum number n, number of electrons per orbital
 - 2. Ground state, excited states
 - 3. Absorption and emission spectra
 - 4. Quantum numbers l, m, s, and number of quantum states (electrons) per orbital
 - 5. Common names and geometric shapes for orbitals s, p, d
 - 6. Conventional notation for electronic structure
 - 7. Bohr atom
 - 8. Effective nuclear charge

B. THE PERIODIC TABLE: CLASSIFICATION OF ELEMENTS INTO GROUPS BY ELECTRONIC STRUCTURE

- 1. Alkali metals; their chemical characteristics
- 2. Alkaline earth metals; their chemical characteristics
- 3. Halogens; their chemical characteristics
- 4. Noble gases; their physical and chemical characteristics
- 5. Transition metals
- 6. Representative elements
- 7. Metals and non-metals
- 8. Oxygen group

C. THE PERIODIC TABLE: VARIATIONS OF CHEMICAL PROPERTIES WITH GROUP AND ROW

- 1. Electronic structure
 - a. the representative elements
 - b. the noble gases
 - c. transition metals
- 2. Valence electrons
- 3. First and second ionization energy
 - a. definition
 - b. prediction from electronic structure for elements in different groups or rows
- 4. Electron affinity
 - a. definition
 - b. variation with group and row

- 5. Electronegativity
 - a. definition
 - b. comparative values for some representative elements and important groups
- 6. Electron shells and the sizes of atoms

Bonding

- A. THE IONIC BOND (ELECTROSTATIC FORCES BETWEEN IONS)
 - 1. $E = kQ_1Q_2/d$
 - 2. E = lattice energy
 - 3. Force attraction = $R(n+e)(n-e)/d^2$
- B. THE COVALENT BOND
 - 1. σ and π bonds
 - a. hybrid orbitals: sp³, sp², sp and respective geometries
 - b. valence shell electron pair repulsion and the prediction of shapes of molecules (e.g., NH₃, H₂O, CO₂)
 - 2. Lewis electron dot formulas
 - a. resonance structures
 - b. formal change
 - c. Lewis acids and bases
 - 3. Partial ionic character
 - a. role of electronegativity in determining charge distribution
 - b. dipole moment

Phases and Phase Equilibria

- A. GAS PHASE
 - 1. Absolute temperature, K scale
 - 2. Pressure, simple mercury barometer
 - 3. Molar volume at 0° C and 1 atm = 22.4 mol/L
 - 4. Ideal gas
 - a. definition
 - b. ideal gas law PV=nRT
 - i. Boyle's law
 - ii. Charles' law
 - iii. Avogadro's number
 - 5. Kinetic molecular theory of gases
 - 6. Deviation of real-gas behavior from ideal gas law
 - a. qualitative
 - b. quantitative (Van der Waals' equation)
 - 7. Partial pressure, mole fraction
 - 8. Dalton's law relating partial pressure to composition
- B. LIQUID PHASE: INTERMOLECULAR FORCES
 - 1. Hydrogen bonding
 - 2. Dipole interactions
 - 3. Van der Waals' forces (London dispersion forces)
- C. PHASE EQUILIBRIA
 - 1. Phase changes and phase diagrams
 - 2. Freezing point, melting point, boiling point

- 3. Molality
- 4. Colligative properties
 - a. vapor pressure lowering (Raoult's law)
 - b. boiling point elevation $((\Delta T_b = k_b m))$
 - c. freezing point depression $((\Delta T_f = -k_f m))$
 - d. osmotic pressure
- 5. Colloids
- 6. Henry's Law

Stoichiometry

- 1. Molecular weight
- 2. Empirical formula versus molecular formula
- 3. Metric units commonly used in the context of chemistry
- 4. Description of composition by % mass
- 5. Mole concept; Avagadro's number
- 6. Definition of density
- 7. Oxidation number
 - a. common oxidizing and reducing agents
 - b. disproportionation reactions
 - c. redox titration
- 8. Description of reactions by chemical equations
 - a. conventions for writing chemical equations
 - b. balancing equations, including oxidation-reduction equations
 - c. limiting reactants
 - d. theoretical yields

Thermodynamics and Thermochemistry

A. ENERGY CHANGES IN CHEMICAL REACTIONS-THERMOCHEMISTRY

- 1. Thermodynamic system, state function
- 2. Conservation of energy
- 3. Endothermic/exothermic reactions
 - a. enthalpy H and standard heats of reaction and formation
 - b. Hess' law of heat summation
- 4. Bond dissociation energy as related to heats of formation
- 5. Measurement of heat changes (calorimetry); heat capacity; specific heat (specific heat of water = 1 cal/°C)
- 6. Entropy as a measure of "disorder"; relative entropy for gas, liquid, and crystal states
- 7. Free energy G
- 8. Spontaneous reactions and ΔG°

B. THERMODYNAMICS

- 1. Zeroth law: concept of temperature
- 2. First law: $(\Delta E = Q W \text{ (conservation of energy)})$
- 3. Equivalence of mechanical, chemical, electrical and thermal energy units
- 4. Second law: concept of entropy
- 5. Temperature scales, conversion
- 6. Heat transfer: conduction, convection, radiation
- 7. Specific heat, specific heat of water $(1 \text{ cal } / {}^{\circ}\text{C} \cdot \text{g})$
- 8. Heat of fusion, heat of vaporization
- 9. PV diagram: work done = area under or enclosed by curve

10. Calorimetry

Rate Processes in Chemical Reactions – Kinetics and Equlibrium

- 1. Reaction rates
- 2. Dependence of reaction rate upon concentration of reactants; rate law
 - a. rate constant
 - b. reaction order
- 3. Rate determining step
- 5. Kinetic control versus thermodynamic control of a reaction
- 6. Catalysts; the special case of enzyme catalysis
- 7. Equilibrium in reversible chemical reactions
 - a. Law of Mass Action
 - b. the equilibrium constant
 - c. application of LeChatelier's principle
- 8. Relationship of the equilibrium constant and ΔG°

Solution Chemistry

A. IONS IN SOLUTION

- 1. Anion, cation; common names, formulas and charges for familiar ions (e.g., NH₄⁺ ammonium, PO₄³⁻ phosphate, SO₄²⁻ sulfate)
- 2. Hydration, the hydronium ion

B. SOLUBILITY

- 1. Units of concentration (e.g., molarity)
- 2. Solubility product constant; the equilibrium expression
- 3. Common-ion effect; its use in laboratory separations
 - a. complex ion formation]
 - b. complex ions and solubility
 - c. solubility and pH

Acids/Bases

A. ACID/BASE EQUILIBRIA

- 1. Brønsted definition of acid, base
- 2. Ionization of water
 - a. K_w , its approximate value $(K_w = [H^+][OH^-] = 10^{-14} \text{ at STP})$
 - b. definition of pH; pH of pure water
- 3. Conjugate acids and bases (e.g., amino acids)
- 4. Strong acids and bases (common examples, e.g., nitric, sulfuric)
- 5. Weak acids and bases (common examples, e.g. acetic, benzoic)
 - a. dissociation of weak acids and bases with or without added salt
 - b. hydrolysis of salts of weak acids or bases
 - c. calculation of pH of solutions of salts of weak acids or bases
- 6. Equilibrium constants K_a and K_b : pK_a , pK_b
- 7. Buffers
 - a. definition and concepts (common buffer systems)
 - b. influence on titration curves

B. TITRATION

- 1. Indicators
- 2. Neutralization
- 3. Interpretation of titration curves

4. Redox titration

Electrochemistry

- 1. Electrolytic cell
 - a. electrolysis
 - b. anode, cathode
 - c. electrolyte
 - d. Faraday's law relating amount of elements deposited (or gas liberated) at an electrode to current
 - e. electron flow; oxidation, and reduction at the electrodes
- 2. Galvanic or voltaic cell
 - a. half reactions
 - b. reduction potentials; cell potential
 - c. direction of electron flow